

#53002E-1 Revised on Jan.31, 2020

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

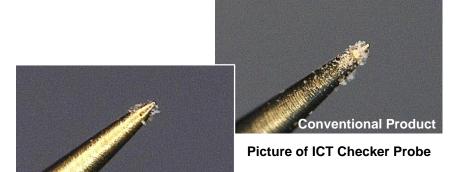
ICT Compatibility

Halogen Content

General Properties

Handling Guide

Koki no-clean LEAD FREE solder paste


ICT Compatible Lead Free Solder Paste

ICT Compatibility

S3X58-M650-7

Product Information

The product performances contained in this Technical Information are assessed strictly according to the test procedures and may not be compatible with results at the end-users. Please conduct thorough investigation to determine optimal process condition before mass production application.

S3X58-M650-7

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

Halogen Content

General Properties

Handling Guide

Features

- Alloy Composition: Sn 3.0Ag 0.5Cu
- Specially designed flux for improved performance on In-Circuit Testing (ICT)
- Low void occurrence on Area Array Package components such as BGA
- Displays good meltability on 0.25mm φ and 0603 chip component
- Complies with Halogen Free Standard (Br+Cl:<1500ppm) per BS EN 14582</p>

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

Halogen Content

General Properties

Handling Guide

Specifications

Application		Printing		
Product Name		S3X58-M650-7		
Alloy	Alloy Composition (%)	Sn 3.0Ag 0.5Cu		
	Melt Point (°C)	217~219		
	Shape	Sphere		
	Grain Size (um)	20–38		
Flux	Halide Content (%)	0		
	Flux Type	ROL0*1		
Solder Paste	Flux Content (%)	11.5±1.0		
	Viscosity (Pa.s)	200±30*2		
	Copper Plate Corrosion	Passed*3		
	Tack Time	> 48 hours		
	Shelf Life (10°C)	6 months		

*1. Flux Type: In compliance with IPC J-STD-004B

*2. Viscosity: Measured at 25°C-10rpm by Malcom PCU-205

*3: Copper Plate Corrosion: In compliance with IPC-TM-650-2.6.15

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

(Head-in-Pillow Property)

ICT Compatibility

Halogen Content

General Properties

Handling Guide

Continual Printability

Test conditions:

Stencil Thickness: 0.12mm (Laser)

•Printer: Model YVP-Xg YAMAHA Motor

•Squeegee: Metal Squeegee (Squeegee Angle - 60°)

•Print Speed: 40 mm/sec

Printing Environment: 24~26°C (50~60%RH)
Tested Patterns: 0.25 mmp,0.4mmP QFP

	Original			10 th Print			10 th Print after 200 Strokes		
0.25mm φ									
0.4mmP QFP									

Stable solder prints were obtained from the original print to after 200 strokes.

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

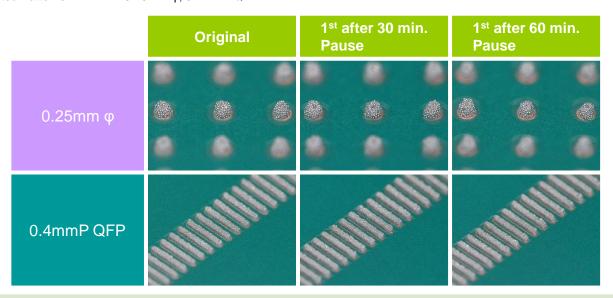
Halogen Content

General Properties

Handling Guide

Intermittent Printability

Test method:


Pause printing for 30 to 60 minutes, and then resume printing. Verify the print profile on the 1st print result to evaluate intermittent printability.

0.12mm (Laser) Stencil Thickness:

Metal Squeegee (Squeegee Angle - 60°) Squeegee:

· Print Speed: 40mm/sec. Print Stroke: 300mm

 Printing Environment: 24~26°C, 40~60%RH Tested Patterns: 0.25 mmφ, 0.4mmP QFP

S3X58-M650-7 performs good intermittent printability up to 60 minutes pause.

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

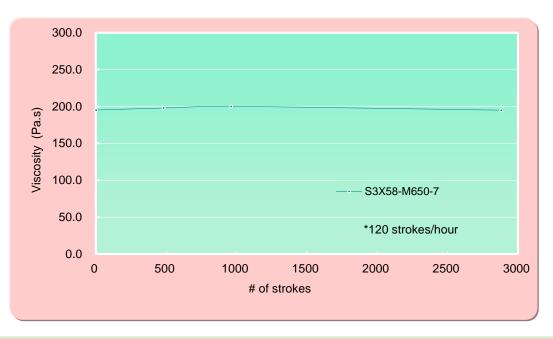
ICT Compatibility

Halogen Content

General Properties

Handling Guide

Viscosity Change Property


Test method:

Mask the metal stencil and conduct continual rolling shear. Measure the viscosity after predetermined number of strokes.

Squeegee: Metal Squeegee (Squeegee Angle: 60°)

Squeegee Speed: 30mm/sec.Squeegee Stroke: 300mm

• Printing Environment: 24~26 °C, 40~60%RH

S3X58-M650-7 showed almost no viscosity change by rolling shear. It has good viscosity retention property.

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

Halogen Content

General Properties

Handling Guide

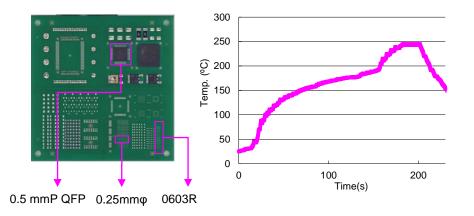
Meltability

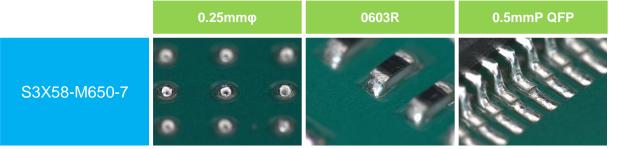
Test conditions:

•Test Board: Glass Epoxy FR-4

Surface Treatment: OSP

Stencil Thickness: 0.12mm (Laser)
Evaluated Locations: 0.25mm φ ,


0.5mmP QFP (Sn plating)


0603R (Sn plating)

Aperture: 100%Reflow: Hot Air Oven

•Atmosphere: Air Atmosphere

•Reflow Profile: See the chart to the right

Even though S3X58-M650-7 is halogen free, it can be observed that the paste has wetted well on various different components and lands tested.

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

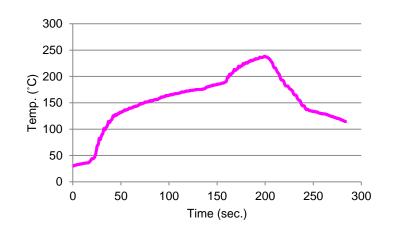
Head-in-Pillow Property

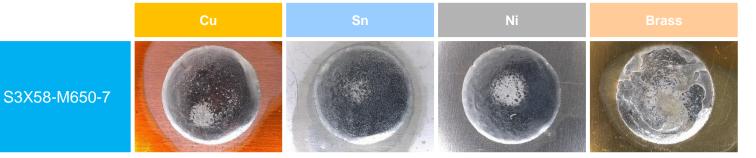
ICT Compatibility

Halogen Content

General Properties

Handling Guide


Meltability (Dewetting Test)


Test conditions:

Tested Substrate: Cu, Sn, Ni, BrassStencil Thickness: 0.20mm (Laser)

Aperture: 6.5mmφ
Reflow: Hot Air Oven
Atmosphere: Air Atmosphere

•Reflow Profile: See the chart to the right

S3X58-M650-7 shows good wettability to various substrates tested.

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

Halogen Content

General Properties

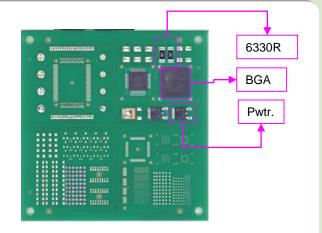
Handling Guide

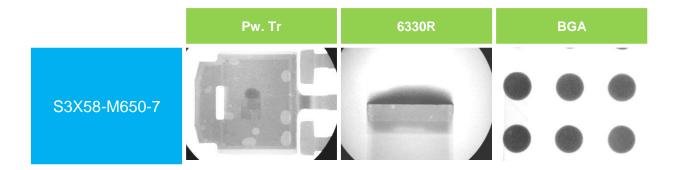
Voiding Property

•Test Board: Glass Epoxy FR-4

Surface Treatment: OSP

Stencil Thickness: 0.12mm (Laser)


Evaluation Locations: Power Transistor, 6330R (Sn plating)


BGA ball - SAC305

•Aperture: 100%

Reflow: Hot Air OvenReflow Atmosphere: Air Atmosphere

•Reflow Profile: Same profile as meltability test

S3X58-M650-7 showed less void occurrence. Void occurrence was especially low on BGA.

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

Halogen Content

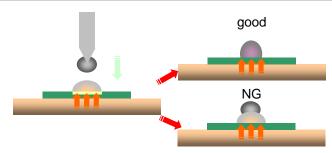
General Properties

Handling Guide

Head-in-Pillow Property

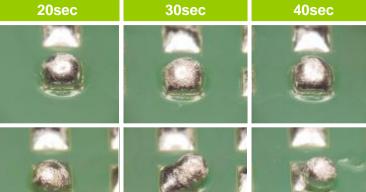
Glass Epoxy FR-4 Test Board:

OSP Surface Treatment:


· Stencil Thickness: 0.12mm (Laser) · Pad Size: 0.8 x 0.8mm

 Component: 0.76mm Ball (SAC305)

• Stencil Aperture: 100%


· Heating: Solder Bath@285°C

 Mounting Interval: 10sec.

Drop a solder ball every 10 seconds after solder melt. The ball and solder stop merging when the flux activation is exhausted, no merger will occur.

Conventional **Product**

S3X58-M650-7

CHALLENGING NEW TECHNOLOGIES

S3X58-M650-7 retains good activation even at 40 seconds after solder melt. owing to adjusted flux fluidity and activators.

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

Halogen Content

General Properties

Handling Guide

ICT Compatibility

Test Method

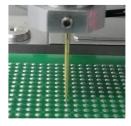
Print an ICT Performance Test Board and reflow. Let the board stand for one day. Use ICT equipment and measure the resistance between the probe and PCB.

Test Method: Glass Epoxy FR-4

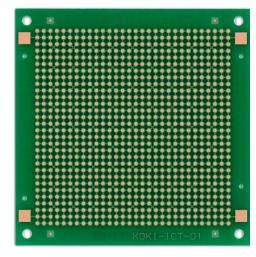
Surface Treatment: OSP

Stencil Thickness: 0.15mm (Laser)

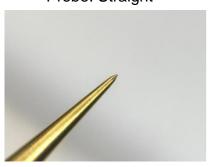
Evaluation Location: 1.5mmφAperture: 100%


• Reflow: Hot Air Oven

· Reflow Atmosphere: Air Atmosphere


Reflow Profile: Same as meltability test

of Tests: 900 timesProbe Pressure: 3.0N


Probe Shape: Crown and Straight

ICT Test Board

Probe: Straight

Probe: Crown

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

Halogen Content

General Properties

Handling Guide

ICT Compatibility

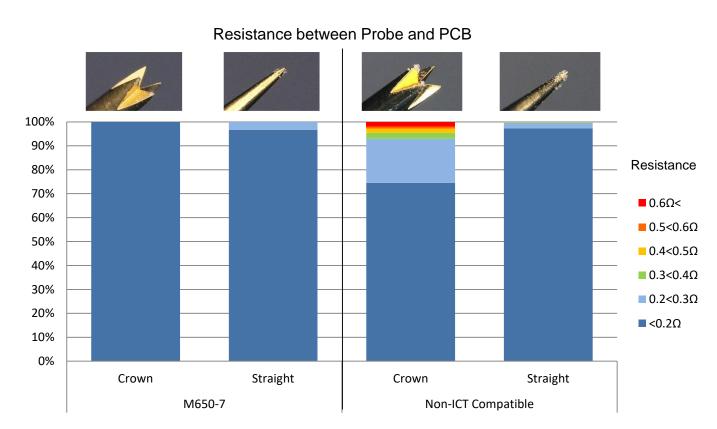


Image: Tip of the probe after 900 measurements

M650-7 shows lower contact resistance and leaves less residue left on the probes as compared to the conventional product tested. M650-7 should improve the straight pass rate at the ICT.

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

Halogen Content

General Properties

Handling Guide

Halogen Content

Measurement Method: BS EN14582

Elements	Results	
F	Not detected	
CI	Not detected	
Br	Not detected	
1	Not detected	

Halogen Content (ppm)

CHALLENGING NEW TECHNOLOGIES

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

Halogen Content

General Properties

Handling Guide

General Properties

Item	Result	Method
Tack Time	> 48 hours	JIS Z 3284-3
Slump Property	0.3mm pass	JIS Z 3284-3 180°Cx 5min
Solder Ball Test	< Category 3	JIS Z 3284-4
Copper Mirror Corrosion Test	Type L	IPC-TM-650-2.3.32
Copper Plate Corrosion Test	Pass	IPC-TM-650-2.6.15 JIS Z 3197
SIR Test	>1E+9	IPC-TM650-2.6.14.1 JIS Z 3197

Contents

Features

Specifications

Continual Printability

Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property

ICT Compatibility

Halogen Content

General Properties

Handling Guide

Handling Guide

1. Printing - Recommended Print Condition

(1) Squeegee

1. Shape : Flat

2. Material : Polyurethane or metal blade

3. Squeegee Angle : 60°

4. Print Pressure : Slightly Low5. Print Speed : 20~80mm/sec.

(2) Stencil

1. Thickness : For $0.65\sim0.4$ mm pitch patterns, $150\sim80$ μ m

2. Fabrication : Laser or chemical etching

3. Stencil Release Speed: 7.0~10.0mm/sec.

4. Clearance : 0mm

(3) Usage Condition

1. Temperature : 23~27°C 2. Humidity : 40~60%RH

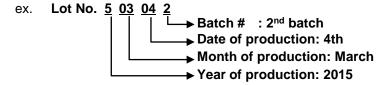
3. Air Conditioning : Direct air blow on to the metal stencil dries solder paste quicker. Please adjust air flow direction

by positioning a shield.

4. Amount on stencil: : Solder paste might stick to the squeegee in the case;

1) amount of solder paste placed on the stencil is insufficient, e.g. <350g

2) the squeegee blades are relatively long, e.g. >300mm


In such cases, it is recommended to increase the amount of the solder paste on the stencil to be

>400 – 500g so that it shall help smoother separation from the blades by its self-weight.

2. Shelf Life

0~10°C : 6 months from the date of production

* How to interpret the Lot #

Contents

Features

Specifications

Continual Printability

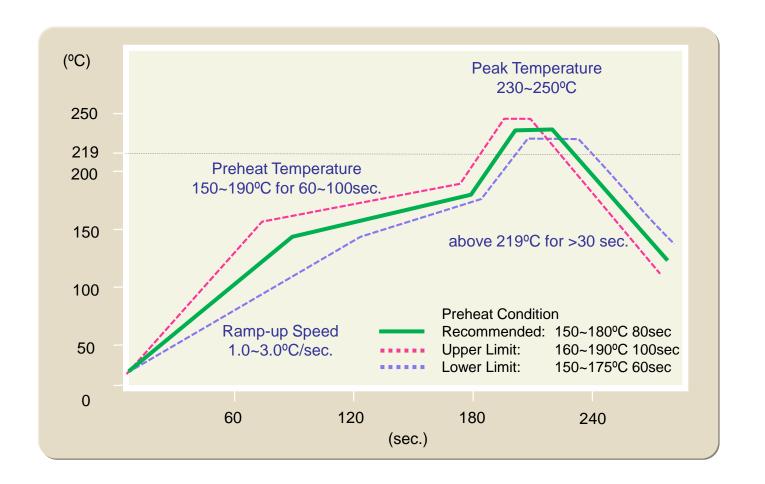
Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property


ICT Compatibility

Halogen Content

General Properties

Handling Guide

Handling Guide – Recommended Reflow Profile

Contents

Features

Specifications

Continual Printability

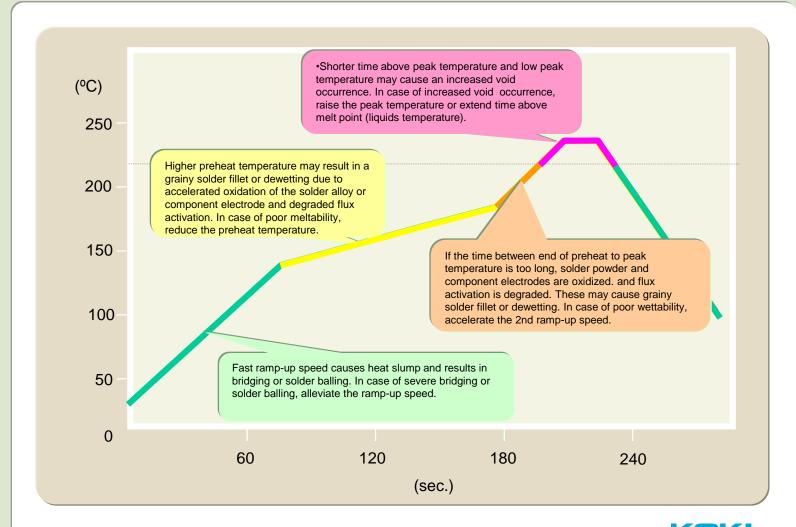
Intermittent Printability

Viscosity Change

Meltability

Voiding Property

Head-in-Pillow Property


ICT Compatibility

Halogen Content

General Properties

Handling Guide

Handling Guide - Supplemental Information on Reflow Profile

